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ABSTRACT

The effects of the space environment on solar cells has, to date, been largely modeled
and approximated in the design of solar arrays. Restrictions such as weight and cost
have precluded direct analysis of the long term effects of radiation in space. At the
Naval Postgraduate School (NPS), a simple circuit has been devised which facilitates in
situ data collection and analysis of these effects. The circuit includes an op-amp and a
high beta transistor for cell voltage biasing. When coupled to a microprocessor-based

controller system, this circuit has the capability to measure and store data pertaining to
solar cell performance I-V curves. The complete system consists of an NSC 800 micro-

processor. D A and AD components, analog multiplexers and demultiplexers. biasing
transistors and op-amps. This design provides a compact, low power, accurate method
for I-V measurement and data storage. Such a system may be used to observe and

* monitor an array of test cells and their performance. degradation in both the space en-
vironment and terrestrial applications.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not
have been exercised for all cases of interest. While every effort has been made. within

the time available, to ensure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

A. THE UBIQUITOUS SOLAR CELL

The photovoltaic effect, upon which solar cells depend for their operation, was first

reported by Becquerel, in 1839. He observed a light-dependent voltage between two

electrodes immersed in an electrolyte. The effect was observed in the solid, selenium, in

1876. Photocells made of selenium and cuprous oxide were soon developed [Ref. 1: p.21.

Bell Telephone Laboratories began theoretical research on the photovoltaic effect in the

1930's. During the 1940's experiments with silicon accelerated development of electrical

devices utilizing semiconductors. In 1954 the first practical solar cell was produced. The

major stumbling block in development of this cell was the production of pure silicon

crystal material. Breakthroughs by Czochralski in pure crystal growing and by Fuller

and Ditzenberger in high-temp,.rature vapor diffusion to form p-n junctions brought

forth the necessary technology for successful semiconductor devices [Ref. 2: p.l.2-11.

The first cells were approximately 3 cm diameter circular wafers, resulting from the

maximum diameter crystal that could be grown with existing technology. Conversion

efficiency was on the order of six to ten percent.

While the solar cell was first considered only for terrestrial applications, the advan-

tages of light weight, small size, and planar design destined this device to play a major

role in the operation of spacecraft, and indeed, this application was by far the major use

of the solar cell for over ten years.
Vanguard I. launched on March 17, 1958. became the first solar powered earth sat-

ellite. The array consisted of six solar panels distributed around the satellite body, each

made of 18 p-n 2.0 x 0.5 cm cells. The system provided less than one watt of power, and

* •operated for over six years in orbit [Ref. 2: p.1.1-1]. Since this austere beginning, solar
cell arrays have been a major source of power for a multitude of spacecraft and provided

them with from less than a watt to tens of kilowatts of operating power. As the power

requirements and complexity of spacecraft have increased, the development of solar cell
technology has kept pace. New materials, dopants, surface preparations, and hardware

have been developed. Understanding of the hazards of radiation from such sources as

the sun, Van Allen Belts, and deep space has prompted the introduction of new adhe-

sives, substrates, and coverglass materials.



Throughout the 1960's emphasis was placed on increasing radiation resistance and

decreasing array weight and cost. For almost ten years little progress was made in the

development of more efficient solar cells [Ref. 2: p.1.2-1]. In the early 1970*s new com-

pounds such as Gallium-Arsenide (GaAs), an optimized contact gridline system, front

surface texturing, and new anti-reflective coatings, such as tantalum pentoxide (TaO:),

introduced new "high efficiency" cells with conversion efficiencies of up to sixteen per-

cent [Ref. 2: p.1.2-21. These developments, coupled with the search for new and better

energy sources, reawakened the interest in terrestrial applications for the solar cell [Ref.

1: p.2]. A major concern in the development of these new cells and associated hardware

has been the testing and analysis of these devices' performance after prolonged exposure

to the space environment, and. to a lesser extent, the earth environment.

B. SOLAR CELL POWER

Solar cells are essentially large p-n diodes, and, as such, possess performance char-

acteristics that are most readily expressed in three parameters. These three parameters

are short-circuit current (1,.), open-circuit voltage (V.,), and fill factor (FF). In the ideal

case, 1,, would equal IL, the light-generated current. V7, may be defined bx:

V In L--o+ 1 (1.1)

where k = Boltzmam's Constant, q = the charge of an electron! T = absolute temper-

ature, and I, represents the saturation current [Ref. 1: p. 79]. The dependence of V, on

1, makes this voltage parameter also dependent upon the properties of the semiconduc-

tor from which the cell is manufactured. I% may vary with time for a given material; the

result of exposure to radiation, age, heat, etc.. Likewise, IL may vary with light intensity.

Fluctuation of these parameters produces varying voltage values which lie along a

characteristic I-V curve. As current through the diode, or cell, decreases from I,. voltage

begins to increase, rapidly, at first, until IL approaches Io. As this occurs, voltage across

the p-n junction rapidly stabilizes at Vo,, as may be seen in Figure 1 on page 3. This

effect produces the characteristic knee on an I-V curve. The operating point which

maxinizes the output power of the cell (vmp., Imp.) is found on this knee.

FF, a measure of how "square" the output characteristics of the diode, or cell are,

is defined by

2
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Figure 1. Typical p-n junction diode I-V curve. Ref. 1: p. 79

NYnp Imp
FF= m.ocsc (1.2)

[Ref. I: p.SO). Optimally. FF is a function of only V,, since 1,, is fixed for a given device.

The enerm- conversion efficiency of a solar cell, then, is

= , rC. I Vo p NIFF (1.3)
Pin Pin (1.3)

'where P,, is the total incident light power on the cell [Ref. I: p.Sl]. Maximum q7 occurs
at the maximum power point (P,,,.). Common commercial cell efficiencies are in the

range of 12 to 16 percent.

C. SOLAR CELL CALIBRATION

The calibration of solar cells to produce "standard" cells is necessary for two rea-
sons. First, to determine the absolute value of the solar constant over the spectral re-
sponse region of solar cells, and second, to accurately establish the light intensity of solar

simulators. Initial solar cell measurements were made outside, on a sunny day, with

volt-ohnmeters, pencil, and paper. These "fair weather" tests were soon found inade-

quate for the accuracy desired in analysis and deficient in their consideration of the ef-

fects of the atmosphere on solar radiation.

Solar cells and array assemblies designed for spacecraft were tested under laboratory
conditions, illuminated by incandescent tungsten lamps. Hlowever, it was found that the
color temperature of these lamps. 2700-3400K, were much cooler than the sun. about

3



6000K, at air-mass-zero (AMO). Further, the spectral composition of the sun was

markedly different from that of the tungsten lamps, which contained large infrared

components. It was thought that water filters would aid in alleviating sonic of these

spectral problems, but these created even more problems and were abandoned. The

stability and reliability of tungsten lamps outweighed the spectral shortcomings of the

device through the 1960's. Calibration of these lamps required closely controlled fila-

ment voltage to control color temperature, and intensity adjustment by comparison with

specially calibrated solar cells. These cells were measured in natural sunlight with a

pyrheliometer, a thermopile designed specifically for measuring solar flux. Lamps cali-

brated with this scheme produced cells which were tested under "Standard Tungsten Test

Conditions" (unfiltered tungsten light of 2800K±50K, equivalent to 100 mW'cm2 solar

radiation at 28°C cell temperature). [Ref. 2: p.11.2-1]

Standard Tungsten Test Conditions were based upon the effect of natural sunlight

on solar cells under normal, but arbitrary outdoor conditions. "Standard" solar cells

* were measured under light at any intensity, and the results extrapolated to 100 mW,

cm 2. Natural sunlight intensity was measured with standard meteorological equipment,

which suffered from some accuracy limitations. Cells were measured in collimated sun-

light, to eliminate the effects of sky background, or corrected by application of a cor-

rection factor based upon the ratio of short circuit currents of a cell measured in

uncollimated light to those measured in collimated light. Such cal; rated cells were used

as "standard" calibration devices for laboratory tungsten illuminators. [Ref. 2: p. 1.2-1]

A number of problems and inaccuracies were readily apparent under this system.

Natural sunlight conditions at test sites varied in both intensity and spectral content so

correlation from one day to the next was poor. The correlation between test sites was

worse. Standard cell calibration was then performed at the Smithsonian Institute Solar

Observatory, near Los Angeles, California, where data on sunlight conditions and

spectra had been collected for twenty-five years. The altitude of the site is 7516 ft, ad-

jacent to the Mohave Desert and characterized by relatively clear skies and low humid-

ities. After the improvement of outdoor illumination condition standards, the problems

of color temperature and tungsten sources were addressed through the use of color

temperature meters which were used for monitoring light and color temperature adjust-

ments in tungsten lamp voltages. [Ref. 2: p.1 1.2-11

It was believed that this calibration methodology, more reproducible and accurate

than previous schemes, was sufficient to achieve adequate extrapolation of results to

4



AMO conditions. lowever, in 1961 it was discovered that efforts to improve solar cell

efficiencies had significantly shifted spectral response toward the red. Cells and panels

measured under sources calibrated against standard cells were resulting in errors of 15

to 20 percent due to the different spectral responses between standards and new cells.

Government and industry began a test method standardization program which soon

solved some problem areas and defined others. New standard cells were developed and

the AIEE established a committee which prepared specifications for measurement of

solar cells using simulated solar radiation conditions. IRef. 2: p.1 1.2-21

Attempts were made to achieve the greatest possible accuracy in solar simulation

and standards throughout the 1960's. High-altitude balloon flights seemed to have the

highest accuracy and became the definitive light intensity standard. The development

of solar simulators also progressed rapidly. However, the unavailability of space-

calibrated cells to verify simulator performance degraded confidence in the accuracy of

these machines. The most widely used solar simulators for cell and array testing since

the late 1960's have been the X-25 series solar simulators developed by the Spectrolab

Division of Textron Electronics, Inc.. These simulators, and those developed since, use

* high-power, high-pressure Xenon arc lamps. Smaller, continuously operating lamps

uniformly illuminate an area up to nearly 0.07 m2, illuminating single cells, while Large

Area Pulsed Solar Simulators (LAPSS), are used to test arrays up to 5 m, permitting a

few milliseconds of illumination by radiation closely matched to AMO conditions. [Ref.

2: p. 1.2-1I]

D. HIGH-ALTITUDE BALLOON CALIBRATION

Solar cells do not utilize all the energy available in the conversion of light energy to

electricity. Various elements of the solar spectrum are absorbed and reflected by the

specialized materials from which solar cells are made. Great effort has been expended

to produce solar simulators which simulate the intensity of the sun as well as its spec-

6 trum. Errors in either could result in an overweight array design for a given application,

or a system which would prematurely degrade and become power deficient.

The Jet Propulsion Laboratory (JPL) has been producing calibrated reference solar

cells through its solar cell calibration program for over twenty-four years. This program

produces reference standard cells, with known I-V characteristics, for the purpose of

calibrating earth solar simulator intensities. Solar cells are flown on high-altitude bal-

looris to altitudes of approximately 120,000 ft (36,576 in), where I-V parameters, tem-

perature. and other data is collected. Flights at this altitude are estimated to be within

5
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0.46 percent of AMO, determined by comparison of the ratio of atmospheric pressure

at altitude to that at sea level computed with the Air Research and Develpment Com-

mand (ARDC) model of the atmosphere. Helium-filled balloons are flown so as to reach

and remain at altitude from two hours before solar noon until two hours after solar

noon. The standard solar cell assemblies are mounted on a tracking system which

maintains orientation with the sun. Data is transmitted to a ground station during the

flight. Upon completion of tl -mission, a valve is remotely opened and the balloon be-

gins a controlled descent. The test array and equipment are recovered after landing.

This method of data collection benefits from the elimination of uncertainties and inac-

curacies in measurements, and minimization of corrections which must be made to data

taken at lower altitudes. Only two corrections are required with the high-altitude bal-

loon method of cell calibration, one for cell temperature and one for earth-sun distance.

Both of these factors are precisely known. Once the reference cell is placed in a simu-

lator. intensity adjustments must be made to match the simulator intensity to that ex-

4 perienced by the cell at altitude. Some cells have been reflown on subsequent flights for

correlation of previous data. Repeatability of within ±1 percent was achieved. verifying

the accuracy and validity of previous reference data. [Ref. 2: p.1 1.3-11

Until 1985 there had been some question as to the validity of balloon-calibrated

solar cells. There was still a question as to the effect atmosphere above the balloon had

on the solar radiation spectrum. If this effect was significant, this method of solar cell

calibration would not produce the desired accuracy in earth solar simulators. In the

summer of 195, cells flown on a balloon were flown and tested on a space shuttle flight.

Comparison of the independent data from the two methods correlated to within one

percent [Ref. 3: p.542]. Thus, the high-altitude balloon method has proven to be an ac-

curate method for solar cell calibration. However, as new cells with new spectral char-

acteristics are developed, new standards are required.

E. RADIATION

There are a variety of variables that affect the performance of solar cells in the space
environment. Temperature, time, material composition and hardening mechanisms must

all be considered in the deployment of a solar array. However, the single greatest effect

on an array in space is radiation, which causes performance degradation during the life

of a satellite. Damaging radiation is composed of energetic or fast massive particles.

Such particles, electrons, protons, and neutrons, inhabit the space environment, in

varying densities, and at various times. Some radiation is a secondary effect of other
I
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phenomena. such as Compton electrons, produced by gamma rays. The Van Allen Belts.

the Sun. and deep space are all sources of radiation. The mass, energy, and charge of

these particles, or associated particles, may interact with or damage solar cells in a

number of ways. The radiation phenomena of interest here are ionization and atomic

displacement. [Ref. 4: p.3-21

Ionization occurs when orbital electrons are removed from an atom or molecule.

Radiation may affect solar cell materials by several ionization-related effects. The

darkening of solar cell coverglasses is an example of one of these effects. Ionizing radi-

ation excites orbital electrons which, upon entering the conduction band, become

trapped by impurity atoms, creating defect complexes within the material [Ref. 4: p•3-2].

A large fraction of energy is lost when fast electrons or protons collide with ab-

sorbing solar cell atoms. Silicon atoms are displaced from their lattice structure posi-

tions by these fast particles, causing permanent degrading damage. The displaced atoms

undergo other reactions and ultimately form stable defects which significantly modify

equilibrium carrier concentrations and minority carrier lifetimes.[Ref. 4: p.3-3]

It is possible to characterize solar cell damage in terms of changes in minority dif-

fusion length. This method has been widely used, but there are practical and fundamen-

tal limitations to this approach. Low energy protons, while causing considerable

displacement damage within the junction region of a solar cell, increasing Io and de-

creasing Vo do not change the cell diffusion length [Ref. 4: p.3-18]. In addition, accu-

rate measurement of cell output parameters is much less difficult than measurement of

diffusion length, particularly after proton irradiation. Empirical analysis has shown that

1,, changes with a linear function of the logarithm of the fluence [Ref. 4: p.3-18]. The

variation of solar cell Vo, after irradiation has also been empirically related to a loga-

rithmic function. Thus, solar cell damage is generally reduced to the quantifiable

• changes in 1,, Vo,, and maximum power.

The wide range of electron and proton energies present in space have necessitated

a method of describing the effects of various types of radiation environment which can

be reproduced in the laboratory. Damage equivalent radiation fluence was developed

to allow description of the degradation of unshielded silicon solar cells which had expe-

rienced I MeV electron irradiation under laboratory conditions, and reduce the effects

of the space radiation environment on a shielded silicon solar cell to a damage equivalent

fluence of I MeV electrons in the laboratory [Ref. 4: p.3-24].

qi7
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Much data has been collected concerning the effects of 1 MeV electron irradiation

on solar cells. Particle acceleration, x and gamma radiation, etc. have been utilized and

carefully measured to define relative damage effectiveness on solar cells in an effort to

simulate with I MeV electron radiation, the state of damage that would be experienced

in the space environment by an equivalent fluence. This concept has also been extended

to the effects of proton irradiation, a more complex problem [Ref. 4: p. 3-291. The de-

gradation of solar cells irradiated with protons is more complex because of the nonuni-

form nature of the damage, particularly by those with energy below 3 MeV. Proton

damage is more severe than that of electrons, but can be normalized to the damage

produced by electrons. With this information, simulation of the space environment has

been almost the sole method through which solar cell parameter degradation is meas-

ured.

F. IN SITU TESTING

Despite successes in simulating the space environment and the modeling of space

radiation, the degrading mechanisms which affect spacecraft are still not fully under-

stood. For example. recent research at the Naval Research Laboratory (NRL) indicates

that radiation dose rates can have as great or greater impact than overall radiation doses

on particular solar cell degradation processes [Ref. 51.

Rarely has the long term process and effects of space radiation been observed.

Simulations on Earth are relatively short, and the results analyzed after the fact. The

Navigation Technology Satellites 1 and 2 (NTS-l,2), were launched in support of the

NAVSTAR Global Positioning System (GPS) in 1977. The GPS program was con-

cerned with the development of high-efficiency solar cells sufficiently radiation resistant

to deliver adequate power throughout the mission lifetime of the GPS satellites. Exper-

imental solar cell arrays were on board NTS-I and NTS-2. These arrays were composed

of Si and state-of-the-art GaAs solar cells which were to be evaluated for performance

and radiation resistance in the space environment. Information collected during the

mission was compared to pre-launch data. It was acknowledged in this experiment that

in situ observation was more valuable than simulation tests [Ref. 6: p.1234]. I-V meas-

urements were taken on entire arrays and telemetered to a ground station. Individual

cell performance was not observed. This is an important point since the current output

of a string of cells is limited to that of the weakest cell in the string. Thus, a defective

or damaged cell will cause inaccurate conclusions based on resulting data.



The Living Plume Shield 1I (LIPS-11l. launched by the NRL in February. 19S3,

carried three double-sided solar panels of Si and GaAs cells. This was a cooperative
program by the U.S. Navy and Air Force to build, test, and qualify a GaAs solar panel

in space. The GaAs solar cells flown were mounted in three parallel strings of 100 cells.

Each string was 25 cells in series by 4 cells in parallel [Ref 7: p.IIOS]. Figure 2 outlines

the satellite structure and the GaAs array.

I
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Figure 2. LIPS-II satellite and GaAs solar cell panel. Ref. 7: p. 111

During! the first 30 days of operation of the satellite, a 7.3 percent power loss was expe-

rienced. These first 30 days of operation were also unmonitored due to satellite orien-

tation problems. While the loss has never been explained, it is believed that the

mechanical failure of a solar cell or contact was the cause [Ref. 7: p. 1109]. Had indi-

vidual cells, as well as an array, been tested, the question of this power loss might have

been resolved. Further, an autonomous data collection and storage system might also

have provided insight into that power loss.
Study of the effects of solar cell annealing as a method of power recovery in de-

graded solar cells is an ongoing effort. However, complete analysis of such effects re-
quires exhaustive study due to the wide variations possible in temperature and annealing

rates, cell power recovery, recover' rates. and the effects these have on the various ma-

terials used in solar cell technology. Space environment tests would aid in the under-

standing and exploitation of this effect.

The Combined Release and Radiation Effects Satellite (CRRES) Program is de-

signed to complete a variety of experiments, among which are the measurement of radi-

ation dose degradation effects in the space environment, and the update of static Earth

9
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radiation belt models [Ref. 8: p.l]. A GaAs solar cell panel experiment on board

CRRES will measure the performance characteristics of differently configured solar cell

strings and simultaneously measure radiation species (protons, electrons, ions), their flux

levels, and energy distributions. Annealing processes and optimum configuration for

solar cell panels operating in a high radiation environment will be studied [Ref. 8: p.43].

This work will update existing static radiat;'n belt models based on data collected in the

mid 1960's which lacked information on ic i species, and pitch angles. This new infor-

mation will also provide the basis for the first dynamic radiation belt models [Ref. 8:

p. 6]. Information collected will be used to optimize solar cell panel design criteria in

consonance with space radiation measurements [Ref. 8 : p.451. This emphasis on in situ

testing and data collection is an indicator of the importance of this kind of information

to satellite designers and users.

Another application of in situ solar cell and array data is in the monitoring of p,

This is the designed operating point of a solar array. During the life of a spaceborne

array Pmp will shift, robbing the satellite of the maximum possible power available from

its solar array. Monitoring solar cell performance would provide the opportunity for

operational adjustment of the power system on a spacecraft, and more efficiently utilize

the remaining power production capabilities of the system.

G. THE MICROPROCESSOR-BASED TEST SYSTEM

Previously, the testing, data collection, data storage, and telemetry of data from a

spacecraft to a ground station posed numerous problems. The weight and complexity
of required testing devices was limiting. Data storage and handling equipment was

bulky. Today, with modern digital techniques and microprocessor controlled devices.

these problems have been resolved. Indeed, the capability to collect more and more

complex information in space and transfer it to Earth has grown by orders of magnitude.

New technologies have miniaturized components to very small weight, volume, and

power parameters. The testing and monitoring of solar cells and arrays in space is now

a viable option, as has been demonstrated by programs such as those listed above.

Based on a simple electronic circuit, one microprocessor-based solar cell array test sys-

tem, for use in the space environment, is presented below.
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!1. A NOVEL SOLAR CELL TEST DEVICE

A. APPLICATION
Dr. Sherif Michael and Robert Callaway developed a simple circuit for the meas-

urement of a solar cell I-V curve at the Naval Postgraduate School in Monterey,

California, in 1986. This photovoltaic test circuit was designed to facilitate the auton-

omous testing of individual solar cells, although configuration for :trings of cells is also
possible. Information accumulated from a number of cells would provide statistically

relevant data for accurate assessment of the behavior of an entire array. While this ap-

proach precludes use of the cells for power supply, there are benefits to this method.

The failure or degredation of a single cell, which can invalidate the data from a string
of cells, can be observed and resulting data discarded if inconsistent with the rest of a

test array. Such information might have provided some insight into the degradation

observed during the first month in or~it of the LIPS-II satellite [Ref. 7: p.1108].

The autonomous operation of this circuit with a controlling system and memory

device would provide real-time data acquisition, as on the LIPS experiments [Ref 9:

p.68S]. However, if real-time collection is not possible, or undesirable, data storage in

bubble memory or other nonvolatile memory devices is possible. The lack of a data re-

cording system created problems in data handling and collection during and after the

Solar Cell Calibration Experiment (SCCE) carried out on the space shuttle in 1983-4

[Ref. 10: p.3011. Data storage also allows collection of data for extended periods oftime,

such as on the proposed CRRES solar cell experiments [Ref. 8: p.10].

Data for entire I-V curves can be collected, opposed to a few points, as on the LIPS

tests, where only seven data points were collected per curve [Ref. 7: p. 1108]. Since the

* P,,,. point shifts during the life of an array, monitoring this parameter is important. A

few points of data will not provide accurate enough information for analysis of such

deviations. Parameters such as temperature, sun angle, time of day, etc., can also be

stored with cell I-V data, simplifying retrieval and correlation of environmental infor-
mation.

B. TEST CIRCUIT REQUIRENIENTS

There were a number of requirements in the development of a low power, light-

weight. inexpensive, and accurate solar cell parameter measurement scheme capable of

11
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operating in the space environment. Below are specifications developed for the auton-

omous test circuit [Rel. 11: p.681.

1. Minimize series resistance through current sinks.

2. Ability to record data accurately.

3. Capability to sweep current through entire I-V curve, (V., to zero voltage at .

4. Capability to measure a series of multiplexed cells and sensrs accurately.

5. Internal resistance of multiplexer CMOS switches should not affect measured data.

6. Circuit must be simple and small.

7. Low power and low thermal output.

8. Buffer input and output signals to insure accuracy.

C. DESIGN
The actual solar cell biasing circuit is composed of a high gain (life) bipolar junction

transistor (BJT), (eg. 2N3405. with hf,> 400), placed in a common emitter configuration

[Ref 11: p.70]. The test solar cell is placed between a 5 volt power source, VP,, and the

collector of the transistor. This voltage level was chosen to preclude the possibility of

saturating the transistor in the circuit. A lower voltage would not ensure this. A resistor

is placed between emitter and ground. An operational amplifier, in a unity gain config-

uration, itilizes its high input impedence to buffer and prevent undesirable current-

produced effects in resulting test circuit data. Figure 3 on page 13 depicts this circuit

[Ref. 11: p. 71].

1
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Figure 3. Noiel solar cell biasing circuit.

The test cell provides a load to the transistor. While very little or no current, (l,),
is allowed to flow into the base of transistor, collector current, (1,), approximates emitter
current, (1,). In this situation, with the cell illuminated and no voltage applied to the
base of the transistor, the voltage across the solar cell is V. The difference between

V., and collector voltage V, is the solar cell circuit voltage:

Vc - NT s = Vs

Emitter voltage, V, , divided by the emitter resistance, R, , provides circuit current, I,

and

SV/R. = 1, = I,

Since there is no appreciable current drain, 1, and, thus, I, are approximately zero. This
provides one endpoint of the cell's I-V curve. As a voltage is applied to the transistor

base, further forward biasing the device, V, decreases, and current drain increases, until
the voltage across the solar cell drops to zero and 1,, is reached. By stepping input
voltages to the transistor base, data points for an entire curve may be collected by

measuring V, and V,. [Ref. 11: p.6 81
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A multiplexed system was tested with a set of these circuits attached to a counter

circuit. which simulated microprocessor control, and a digital-to-analog device. The

capability to produce a large number of data points through the D A converter resulted

in very accurate I-V curves.

1
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Ill. MICROPROCESSOR CONTROLLER

A. SYSTEM DESIGN

Rather than design a controller system from scratch, a search was performed to
identify and acquire an operative controller that fulfilled the needs envisioned in the de-
plovment of the solar cell measuring system. The system needed to be capable of oper-
ation in the space environment. Low power consumption, simplicity, small size, and
compatibility with the measurement circuits were also necessary. Assembly language
programming was initially assumed, due to available supporting hardware at NPS, but
this requirement was relaxed to allow for a higher level language with the addition of
new compilers to NPS.

The controller designed for operation of the NPS Autonomous Space Shuttle Pay-
load Bay Launch Vibro-acoustics Experiment was ultimately chosen for the solar cell
measurement system. The vibro-acoustics experiment, an ongoing project, was designed
for flight in the payload bay of a space shuttle to measure the vibration and acoustic
effects experienced by the space shuttle during the stresses of a launch. The experiment
requires a NASA-approved autonomous control system to detect shuttle launch, execute
a power-up sequence, and operate the experiment. The controller also monitors the
progress of the experiment and contains diagnostics within its software. By necessity,
characteristics desirable for the solar cell measurement system were inherent in this de-
vice. The controller was well developed and documented, both in hardware and in soft-
ware. The microprocessor system was compatible with typical assembly languages for
which support at NPS was readily available. The addition of a 'C' language compiler
and subsequent programming of the controller in 'C' was a further incentive in the se-
lection decision. The controller hardware had been developed for low power consump-

- tion, as well as minimal size. The entire controller, including memory, was placed on a
9 x 5.5 inch board and required a single 10 volt power supply. An external RS-232 cable
provided terminal access for diagnostics. IO ports end at 44-pin connectors for easy
attachment of external devices. The vibro-acoustics experiment also developed the use
of bubble memory as a means of nonvolatile data storage. This capability was not
chosen for use with the solar cell measurement project due to cost and the continued
development of this capability within the vibro-acoustics project. However, bubble
memory presents a viable option for future inclusion as a data storage device with the

15
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solar cell measurement system. A complete schematic diagran is included in Appendix

A.

B. CONTROLLER COMPONENTS

1. NSC800 Microprocessor

The heart of the controller is the National Semiconductor NSC800 micro-

processor. This device provides the advantages of CMOS construction, a small heating

coefficient, and low power consumption. The processor has the ability to multiplex the

addressdata bus. An 8-bit machine, the NSC800 can be operated in a 16-bit address

format by multiplexing lower address lines (AO-A7), latching them externally, and com-

bining them with the upper non-multiplexed address bus (AS-A15), which creates an ef-

fective address space of 64K [Ref. 12: p.81. This family of devices has a number of

compatible peripheral devices and is capable of addressing multiple input output (1 0)

devices. The microprocessor supports the Z-80 assembly language instruction set.[Ref.

13: p.17]

2. NSC810A RANI-1/O-Timer

The National Semiconductor NSCS1OA is a random access memory (RA.M).

timer, and 1 0 peripheral device. This is another CMOS machine, which incorporates

1024 bits of built-in static RA-M in an 8-bit format. The 1;O section has 22 program-

mable bits arranged into three programmable ports. Port A, composed of 8 bits. is ca-

pable of basic I 0 operation. or one of three strobed modes. Port B is operable only in

a basic I 0 mode. Port C can be used for basic IO or as a handshake in conjunction

with port A operation as a programmable timer [Refs. 13: p. 26 . 14: p.l]. Through indi-

vidual port bit manipulation, external devices may be operated. Designed for operation

with the NSC800, two of these devices are utilized in the controller system.

3. IM6402 Universal Asynchronous Receiver Transmitter (UART)

The UART provides the controller the ability to interface with a terminal,

., which, in turn, allows troubleshooting and diagnostic operation of the system. The

UART must also transmit parallel data from the controller data bus to external serial

data lines. The INTERSIL IM6402 generates the clocking for transmitter and receiver

operation for such asynchronous interfacing. This UART is another low power CMOS

device. [Ref. 13: p.43]

4. MM58167 Real Time Clock

The vibro-acoustics experiment required initiation of experiments at a particular

time. Power-up and power-down were also part of a power conservation requirement
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within the completely autonomous experiment. The ability to operate in this fashion is

also compatible with the operation of the solar cell measurement system which need

consume power only when collecting data, excepting memory devices. The clock fea-

tures a four year calendar with month to thousandths of a second selection. The chip

includes a programmable alarm circuit for power-up and power-down commands. The

MM58167 is a CMOS device manufactured by National Semiconductor. [Refs. 13: p.51,

15: p.l].

5. Memory

a. EPROM

Driver memory for the controller is composed of standard CMOS UV

erasable PROMs. The 2764 series EPROM is a low power. high performance device

with good noise immunity. This memory chip has a standard pin configuration and a

variety of versions for specialized applications, including wide operating temperature

ranges [Ref. 16: p.1]. The controller board has space allocated for up to eight memory

chips. The current solar experiment configuration utilizes five of these spaces for

EPROMs, which provide the operating code for the controller. EPROMs provide an
inexpensive method for rapid software development and experimental investigation into

the limits of controller operation.

b. Bubble Memory

A nonvolatile memory was required for data storage on the vibro-acoustics

experiment. A similar memory system is also necessary for solar cell measurement data

storage. Bubble memory provides a relatively low power, megabit capacity which is

nonvolatile, even when power is removed, purposely or in the event of a failure [Ref.

13: p. 311]. These features make this format ideal for large quantities of data and long

term storage, as might be experienced during a space mission. Bubble memory charac-

teristics also facilitate the retrieval of data for transmission at extended intervals.

However. incorporation of bubble memory, under development for the vibro-acoustics

project, was eliminated at the current time to F, Jude any delays in the solar cell project

which might occur from this ongoing development. The expense of bubble memory, in

conjunction with currently available research funds, also precluded inclusion as a storage

device in this project.

c. RAM

A simple alternative to bubble memory is a battery powered static RAM

system. which may remain powered at all times. This approach would provide for an

17



inexpensive nonvolatile memory with small weight and power penalties. The current

controller is not configured for a separate memory power circuit. It was decided to leave

this relatively simple modification for later addition and concentrate on the data col-

lection, storage, and retrieval system for the solar cell project. Thus, static RAM,

standard 8K word, 8-bit chips were chosen for data storage. The 6264 machine is an

industry standard with high-speed and low power characteristics [Ref. 17: p.1]. The

static RAM requires no refresh and dissipates less power than dynamic RAM.
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IV. SOLAR CELL ARRAY TEST CIRCUIT

A. OVERVIEW
The solar cell array test circuit was designed to provide a bias on test array solar

cells and collect the resulting information relating to individual cell voltage output and
current. This required conversion of digital signals to an analog form to facilitate bias-

ing the transistors used in the novel cell test circuits. The two signals tapped from each

solar cell were then reconverted to digital form and passed to the controller micro-

processor for manipulation and storage.

B. COMPONENTS

I. DAC0800 8-bit Digital-to-Analog Converter

The DACOSO0 is a standard, S-bit CMOS digital-to-analog converter, which

provides low power consumption and a 100 ns output current settling time. It requires
little direction or external control and operates under a wide power supply range. A
wide range of applications and compatabilitvy with standard CMOS and TTL devices also

made it appealing.[Ref. 18: p.1]

2. HI-506A Analog Multiplexer

The HI-506A is a rugged analog multiplexer with the capability to automatically
multiplex or demultiplex analog signals. That is, it is manufactured with the necessary

internal switches so as to be insensitive to signal flow direction. For this application the

demultiplexing capability was required. This component was also designed for space use

and has a high electrostatic discharge (ESD) resistance. [Ref. 19: p.1]
3. ADC0809 A/D Converter and Multiplexer

The ADC0809 device incorporates an 8 channel analog multiplexer, aiding in
the minimization of individual hardware devices, and allowing direct access to analog

signals. The analog-to-digital converter is an 8-bit machine using successive approxi-

mation for conversion. The converter requires no external scale adjustments. Latched
address inputs and outputs also maximize ease of interface with microprocessors. It is

advertised to have no missing codes and a total unadjusted error of± l/2LSB, important

considerations in the accuracy of the final output values. A CMOS device, it also pro-

vides high speed, accuracy, minimal temperature dependence, and low power consump-

tion. IRef. 20: p.1]
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C. DIGITAL-TO-ANALOG CONVERSION AND DEMULTIPLEXING

The 8-bit digital bias signal generated in the controller was directed to the

DAC0800. (Figure 4 on page 21 refers.) The input was converted to positive current

output and referenced to ground. The output current signal was converted through an

LM741 op-amp to a positive low impedance voltage output. This output was then for-

warded to the H1506A Analog Mulitplexer. Individual solar cell address information

was wired into the multiplexer from NSC810-1. The received voltage signal was thus

routed to the correct cell on the array.

D. ANALOG TO DIGITAL CONVERSION AND MULTIPLEXING

The desired analog voltage signal was actually the difference between source voltage

and transistor collector voltage. An LM741, in an instrument amplifier configuration.

was placed across the biased solar cell to provide this difference voltage. The resulting

desired analog cell output voltage was then routed to an ADCOS09. Here, address lines

* from Port B of NSC8I0-1 facilitated demultiplexing. The signal was converted to a

digital signal and passed to Port A of NSC810-2, as may be seen in the solar cell array

test circuit schematic in Figure 4 on page 21.

Current information was tapped from the biasing transistor's emitter lead in analog

voltage form. It may be recalled that this voltage value, divided by the known emitter

resistance of 10 ohms, provides the desired current value. This computation is accom-

plished by software in the microprocessor after analog-to-digital conversion, prior to

retrieval of data from storage. In a manner similar to that of the voltage signal con-

vergence scheme, the current information signal was directed through a second

ADC0809 and the resulting digital data placed on Port B of NSC810-2.

E. INTERFACE

The two NSC810 1,0 devices were utilized for digital signal output, chip and data

control, and digital data input. Port A of NSC810-1 was used for bias signal output.

* .The stepped output signal provided a bias for the solar cell novel test circuit. The lower

three bits of Port B on NSCSI0-1 carried solar cell address information. The fourth and

fifth bits provided a 'start convergence' pulse for analog-to-digital conversion on the

ADC0809 chips. The 'output enable' signal to the ADC0809 devices were always as-

serted. Signals output by the NSC8I0 ports were internally latched, providing simplifi-

cation of timing and allowance for the settling time of signals before reading or

conversion.
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Two of the ports on the NSC8IO-2 were used for test circuit data retrieval. Port A
received voltage information, and Port B current information. Two bits of Port C were
utilized to record the end-of-convergence signal from the ADCOSO9s. A clock signal

from the controller was passed to the ADCOS09s via a spare port bit on the NSC8IO-2.

22

• , ,..Ii i i J l I i i i. .



V. SOFTWARE

A. CONTROLLER ROUTINES
The controller software files below are described in a cursory manner. They were

originally designed for another project and modified for use in this application. A more
complete description and use of the files developed for the NPS vibro-acoustics project
is available in, Control of an Experiment to M1feasure Acoustic Noise in the Space Shuttle,

by Charles Cameron [Ref. 21].

The software developed for the microprocesser controller was written to provide for
autonomous operation of the system. This required a timer and alarm routine to power

up and power down the system. A substantial diagnostics routine and menu further

provided for ease in manipulation and testing of the controller. Some of these features
were incorporated in the portions of code utilized for the solar cell test system. The 'C'
language was chosen largely For its readability, opposed to assembly languages. While
a 'high level" language. C provides the ability to simply manipulate individual bits, as
well as operate on words and bytes. C is also very portable. Appendix B includes the

start-up and operating routines for the microprocessor controller. These files are, for the
most part. modified versions of those written by Cameron [Ref. 21: Chapter 4 and Ap-

pendix B].

Header files, designated by the ".h" in the file name, are used to define and declare
variables, constants, functions, routines, structures, etc. which will be utilized in the

overall program by various modules of code. The header files indicate where externally
defined code is located. This is necessary for program compilation.

The header file solareva.h defines parameters necessary for start-up and operation

of the controller. Bit definitions, L.O assignments, and clock routine definitions are
provided. Some of these have been renamed or modified for specific use in the solar cell

test routines, which utilize I 0 in a different manner than originally intended for the
vibro-acoustics routines. The files solar.h, initial.h, convert.h, global.h, inout.h, delay.h.

newio.h, and clock.h are all header files which declare functions, variables, etc., used
within the associated C file, which has the same name as the header file. Such header

files must be included with routines which utilize these "externally" defined parameters.

C files, those whose name are followed by ".c", are the actual start-up, operation,
and test routines compiled and executed by the microprocessor. With the exception of
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celltest.c. all the .c files are copies of, or modified versions of the files written by

Cameron for the vibro-acoustics project [Ref. 21: Appendix B1.

lIitial.c is the initialization code for the controller. The operations executed here

set I 0 ports, initialize functions and sequences, and start the timer operation. The

initial.c file is executed by solar.c. The solar.c module provides monitor and keyboard

interface, displays the version of the routines used, and prints a menu for routine oper-

ation, testing, and diagnostics. The separate modules which actually accomplish these

actions are accessed by solar.c. The importance of header files becomes apparent here

as routines external to this file are required for its execution. Solar.c contains the

"main" portion of the program, the code from which all other routines are accessed, and

to which they ultimately return. The menu selections 'Execution' and 'Data Memory'

were added for experiment execution and data retrieval, respectively, in the menu section

of code.

The convert.c module provides ASCII to hexidecimal, decimal, or binary-coded
r0.i decimal (bcd) conversions, as well as the reverse operations. This is necessary for human

readability at the monitor, and keyboard interface.

Inout.c provides the actual data output and execution of keyboard input commands.

While the functions in this file are all written in C, some functions were more efficiently

written in assembly language, and hence, newio.s includes the operations of input and

output of data to and from 1 0 ports. Note that the .s indicates an assembly language

module. The start.s file is the processor initialization code which is executed when the

system is reset or initially powered up.

The file global.c includes information necessary for the timer and alarm routines

defined in clock.c. The clock.c file provides for initialization of the clock and setting a

wakeup time via a menu driven routine. The clock operates on a four year cycle and

may be set from months to seconds of accuracy and waketime. Delay.s creates an "n"

millisecond time delay. This delay was used at various points during software and

hardware interface to check completion or execution of digital-to-analog and analog-

to-digital functions as well as verify conversion time. A symbol table has been included

* - which specifies variable definitions and declarations within compiled routines. The table

also provides memory address information, storage allocation, and total memory and

addressing necessary for programming PROMs.

Programming was done on an IBM-PC utilizing MS'DOS. Compilation was ac-

* complished with the Uniware C Compiler, produced by the Software Development Sys-
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tems Co.. of Downers Grove, Illinois. Completed programs were linked, assembled, and

transferred to EPROMs on the same machine.

B. SOLAR CELL ARRAY ROUTINE

The solar cell array test routine, celltest.c, was designed to directly interface the test

circuit with the controller, input output information, and manipulate that information

for storage and use. The entire program is included in Appendix C.

Celltest.c first defines the variables used in the routine which assign constants for

bit manipulation during execution of the program. ARRAYSZ defines the number of

solar cells in the array. STOP and START provide high and low assertion for operating

bits on the ADC0809s. Variable declarations are also made prior to entry into the exe-

cutable code.

Three structures, groupings of specific variables that may be handled together in a

particular format, are defined. The first, PORTI_B, allows bit operation on an output

port to assign the solar cell address of interest and to provide the 'start convergence'

* pulse necessary for analog-to-digital conversion by the hardware, all via the 'command'

operator. The second structure, C_PORT, provides access to two bits which must be

read when the ADCOS09s have completed the convergence cycle. The third structure is

called datapt. This grouping assigns two variables which will hold information for a

single data point. Each pair of these points is assigned to a cell in the array,

experimentdata, which is defined to allow memory space for a maximum of 256 data

points for each of the eight cells included in the array. Figure 5 on page 26 follows the

flow of this routine.

Following these definitions and declarations, the executable portion of the routine

begins. It is labeled 'execute'. The routine begins with a loop for which each iteration

completes the testing of one solar cell. Following the 'for' statement which initiates this

loop are three statements which initialize a variable counter and two comparison vari-

* ables. After these initializations are two statements which address a particular solar cell

via the PORT IB structure through a 'command' statement, and execute the assignment

by output through port I of NSC810-1, the addressing and control output port.

A second 'for' statement is next executed, providing for the biasing voltage ladder

• and associated control, manipulation. and storage of resulting data for each data point

created. There are 256 voltage levels, evenly distributed through a three volt reference

source, which provide the steps in this loop. These values are passed, one at a time,

through the D A converter, analog demultiplexer, buffer op-amp, and to the cell biasing
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circuit. Once the cell has been biased, the start convergence pulse, 'strtcn', is asserted

with START and STOP statements. A single pulse is used to start the convergence cycle

of both A, D converters. When each ADC0809 has completed convergence of its as-

signed analog signal to a digital signal, 'end of convergence' pulses are transmitted by
the analog-to-digital converters. These pulses are received and latched by two bits of

port C on NSC810-2. A 'while' construct waits until these corresponding bits have been

asserted before allowing execution to continue, thus assuring complete conversion before

storage of data.

The next 'if statement checks for a current value greater than zero and deletes un-

changed data values. This prevents unnecessary storage of data or storage while the

input voltage ladder overcomes the forward voltage of the biasing transistor, and during
which, no current flows. The voltage ladder provides voltage that will eventually satu-

rate the biasing transistor and cause a negative voltage measurement. It should be noted

that the analog-to-digital conversion recognizes only magnitude and not gender, pre-

, venting a simple search for negative values. A succeeding nested pair of 'if' statements

provides a smoothing effect on data by deleting data which is inconsistent with the curve

as a result of conversion or other error. The I-V curve of interest need not collect data

beyond the point where voltage has reached zero. At this point the difference between

the bias voltage and the solar cell output has become zero and short circuit current has

been achieved. Thus, the succeeding 'if' statement ends the the input ladder by incre-

menting the counter to 255. The two digital data, voltdata and currentdata, are stored

in RAM at this point. The storage statements reflect the fact that not ever' step of the

biasing loop will result in storage of a data point; the 'row' parameter only increments

when data is stored into the array. Figure 6 on page 28 follows the flow of this routine.

The succeeding routine, 'retrieve', is executed by selection of the appropriate choice

on the controller menu. When called upon, this routine retrieves the stored data from

RAM by first identifying the appropriate cell number, entered via the input terminal.
This cell number corresponds to the column in the storage array which holds the stored

data. The retrieving loop is written to stop retrieval at the end of data in the loop.

Voltage and current data were stored in hexidecimal form to minimize storage allo-

e- cation requirements. Thus, for plotting and easy human interpretation, the data must

be converted to a decimal form. Data is converted to floating decimal upon retrieval and

appropriate scaling factors applied. A one volt reference was used in the analog-to-

digital conversion of the voltage values. This corresponds to 0.0039 volts per step
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- Figure 6. 'Retrieve' routine flow diagram.

through the 256 step ladder within the ADCOS09, the applied multiplication factor used

during the voltage conversion step. However, inherent conversion error requires an

offset factor which increased the multiplication factor to .0040 for silicon cells. A wider

range of current values was required because of the different outputs produced by Si and

GaAs solar cells. Thus, a larger reference voltage was required for the ADCOS09 used

in converting the voltages which indicated current levels. The three volt reference used

here corresponded to .0117 volts per each of the 256 steps. However, this value required

a further division by ten ohms, to complete the conversion from a voltage value to a

current value. In order to account for the conversion error of this ADCOS09, the factor

* was changed to 0.0116. The emitter resistors must also be accurately measured prior to

current calculations and accounted for as well. Finally, the two decimal form values are

output by the microprocessor. These values, with a third parameter unique to the plot-

ting routines used for data display, were transferred to floppy disk via the Procomm

~1 interfacing program. Header and trailer inputs were included for convenience interfacing

an existing plotting routine in another program.
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VI. TEST AND RESULTS

A. TEST

Data output format was a manipulation of hexidecimal data into floating decimal.

This facilitated interface with a 'personal computer' in the laboratory and the transfer
of data to another storage medium for easy analysis. Conversion from hexidecimal to

floating point decimal need not be accomplished within the controller, but was in this

case for convenience. Data was retrieved from the solar cell test system via a commer-

cial interface program. Both available and versatile, 'Procomm', developed by

Datastorm Technologies, Inc., was chosen for this task. Retrieved data was transferred
to floppy disk files and printed out in graphic form via a plotting routine on the solar

laboratory computer. The plotting routine was part of the program designed for solar
cell data collection, storage, and analysis using the NPS Solar Simulator and associated

hardware developed by Don Gold [Ref. 22: Appendix D].

Ideally. the solar cell array test system was designed to allow data collection from
an entire array of cells. Practically, the system was limited by the solar simulator light
source used at NPS with this project. The illuminated area produced by the simulator

provides for, at most, a pair of 2 cm square cells under AMO conditions. Thus, data

collection was limited to single cells.

B. RESULTS
Data collected with the microprocessor-based system for silicon solar cells was

plotted and compared to that produced by the direct measurement and storage system

in place in the NPS Solar Laboratory. Figure 7 on page 31 and Figure 8 on page 32
are of two different 2 cm x 2 cm silicon solar cells and show the similarities in the results

of the two methods of data collection. A sample table of silicon data is provided in

Appendix D.
The results for GaAs solar cell comparisons is somewhat different, apparent in Fig-

ure 9 on page 33. While a small adjustment of approximately 60gV was added for offset

and resistor precision error, this adjustment proved inappropriate for GaAs cells. At this

point, the effects of several types of analog-to-digital conversion errors should be inves-

tigated more closely in conjunction with the conversion process. These effects include

[Ref. 23: p.113.1:
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I. Offset error values which are within the range equivalent to the LSB but have
shifted the range upwards, efl'ectively extending the error range.

2. Gain error caused by an input value that is a fractional value of the full scale range
(FSR). resulting in a corresponding fractional binary output. The binary output
becomes detached from its analog input with greater fractional values of FSR.
Figure 10 on page 34 portrays a relationship between practical and ideal transfer
curves of binary representations for fractional FSR values.

3. Nonlinearity for the range of analog voltages applied when compared to the binary
codes produce !. If this error is significant, differential linearity may cause a skip
of certain binary codes, known as "missing codes".

Tests executed with the delay of one or more milliseconds indicated that ample time was

allowed for complete convergence, and thus, should not be a factor in the errors ob-

served. Tests conducted without a delay on silicon cells produced no variations, com-

pared to those with the delay.

4
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VII. CONCLUSIONS

The microprocessor-based solar array I-V measurement system was built using a

controller previously designed and tested at the Naval Postgraduate School in Monterey,

California. This controller's progranmming was modified, and its Ii0 ports connected to

circuitry specifically designed for this project. Digital biasing signals were demultiplexed

through an addressing scheme and converted to analog voltages. These voltages were

then used to bias a novel solar cell biasing circuit, from which two voltage taps were read

on each cell. Successive taps, representing cell voltage and current data points, were

multiplexed, converted to digital values, and stored in controller memory; data repres-

enting a complete solar cell I-V curve for each cell in the test array. Another pro-

grammed routine enabled retrieval of this data, manipulated into decimal form for

handling and analysis.

The microprocessor-based solar array parameter measurement system is a viable

method for collection, storage, and retrieval of I-V information and other pertinent data.

The system is capable of accurately measuring a number of cells in an AMO environ-

ment. Data may be accessed from system memory, manipulated, and analyzed.

There are a number of improvements and possible avenues of study to pursue in the

further development of this project.

1. A more complete study of the accuracy of the systems output, including the possi-
bility of using a 16-bit microprocessor system.

2. A software or hardware approach for analysis and compensation for conversion
error effects.

3. Installation of the alarm clock system for timed power-up and power-down.

4. The inclusion of nonvolatile memory; battery powered or bubble memory.

35
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APPENDIX A. NPS MICROPROCESSOR CONTROLLER SCHEMATIC
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APPENDIX B. CONTROLLER START-UP AND OPERATING CODE

A. FILENAME SOLAREVA.H

/N May 4, 1988 solareva.h W/

#define TRIES 3 /* Number of times to try something before giving up. /

Wdefine STRLEN 7 /* Number of characters to allow for integer
characters, including a null terminator. N/

#define HSTRLEN 2 /N Number of characters to allow for hexadecimal
characters*/

#define HEXINTSTRLEN 4 /N Number of characters in a hexadecimal word. C/
#define DUttPHIDTH 16 /I Number of bytes in a line of a memory dump. /

#define TERMON Ox08 / Points to the terminal connection line in NSC810 #1,

Port C, Pin 3. /

/N Bit definitions for port C of NSC810 #2. (Base address is Ox22.J

Bit # Meaning

* 5 X
4 X

3 X
2 End of Convergence signal EOC-2

1 End of Convergence signal EOC-1
0 X

#define READC1 OO2 / Points to the NSCS1O #1, Port C, R/H register. /

1#define BCLRC1 OxOa /* Points to the NSC8IO #1, Port C, Clear register. N/
#define BSETC1 OxOe / Points to the NSC810 #1, Port C, Set register. VI

#define BCLRCZ Ox2a /N Points to the NSC81O #2, Port C, Clear register. N/
#define BSETC2 Ox2e /N Points to the NSC810 #2, Port C, Set register. NI

#define MDR1 Ox07 / See the documentation for a description of the N/
#define DORAl OxO4 /* use of these ports. W/

#define DDRBi OxOS
#define DDRC1 Ox06

#define TM02 0x18
#define TOLB1 OxlO

#def ine TOHB1 oXll
#define START01 OxlS

#define MOR2 Ox27

#define DDRA2 Ox24
#define DDRB2 0x25

#define DDRC2 Ox26
#define TMO 0x38

* #define TOLB2 Ox30

*define TOHB2 0x31
#define STARTOZ 0x35

#define PRTDATA OxcO /* Port number for data from RS-232C interface. /

#define PRTCTRL OxeO /* Port number for control information from RS-232C
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interface. 5/

#define PRTOUTRDY OxOl /* Bit zero of the PRTCTRL byte is a one if the printer
is ready to accept data and zero otherwise. */

#define PRTRDY Ox0Z /* Bit one of the PRTCTRL byte is a one if there is

data to be read and zero otherwise. s/

#define PORT1_DA OxOO /* 0/A Output address (port A on NSC81D-1) 5/

#define PORTICTRL OxO1 /* D/A Control Port (port B on NSC810-1) 5/

#define PORTZADV OxZO /* A/D Voltage input s/

#define PORTZ-ADC OxZ1 /* A/D Current input */

#define PORTCZ Ox22 /* A/D EOC port 5/

#def ine TRUE Oxff

#define FALSE OxO0
#define ASCII 0 /* Used as a parameter to showbu.bbuffo ). 5/

#define HEX 1 /* Used as a parameter to showbubbuff( 3. 5/

#define NULL OxO0 /* The following are ASCII definitions. 5/

#def ine BELL Ox07

#define SPACE Ox2O
#define DELETE Ox7f

#define THOUSANDTHS Ox60 /* The ports for reading the date and time. 5/

# #define HUNDREDTHS Ox61

#define SECONDS Ox62

#define MINUTES Ox63

#define HOURS Ox64

#define WEEKDAY 0x65

#define DATE 0x66

#define MONTH 0x67

struct datetime ( /* This structure contains binary coded 5/

char month; /* decimal data as defined for the National */

char date; /* Semiconductor MK58167A Microprocessor 5/

char hour; /* Real Time Clock. */

char minute ;

char second;
char hundredths)

char thousandths;

struct idatetime C /* This structure contains the same 5/

ant imonths /* information as the datetime structure, but*/
Sant idate; /5 in integer format. clockint() takes care 5/

ant ihour; /* of converting from BCD to integer formt. 5/

int iminute;

ant iseconds
ant ihundredthss
int ithousandths;
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* B. FILENANIE SOLAR.H

/* April 19, 1988 solar.h e

extern void versioni void)$
extern void memary-dunp(void);
extern char menu(void);

C. FILENAME INITIAL.H

/* April 19, 1988 initial.h C

extern void in ithardaare (void)$

D. FILENAMIE CONVERT.H

/* convert.h April 20, 1988 C

extern char atoh( char *ascji)s
extern unsigned int atohexint(char asciifl);
extern int atoilchar Cs);
extern char Cbcd..asclchar bed);
extern mnt bcd_intchar bed);
extern char *ctoh(char byte);

extern char int-bodtint decimal);

extern char *itoatint n, char s[IB;
extern char tolower~char c))

extern char *uitohlunsigned mnt word);

E. FILENAMIE GLOBAL.H

/C April 19, 1988 global.h C

extern char prtcovvnecteds

extern struct datetime clock;

extern struct idatetinie waketime;
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F. FILENAMIE INOUIT.H

/* April 19, 1988 inout.h 0

extern, char checkprt(voidi, gethex(void), terminivoid);
extern int getint(void);
extern unsigned int gethexintivoid);
exter, void dunip( unsigned int address, unsigned ini length);
extern void echo~char data), portdumnplchar *string);
extern char termin(voidJ;
extorn, void testinputivoid), testoutputivoidJ;

G. FILENANIE DELAY.H

/*delay.h Hay 19, 1988 Header file for delay.s in ASMISOURCE directory 0

extertn void delaytint);

H. FILENAMIE NEWVIO.H

1* April 20, 1988 newio.h
header for newio.s, in AStISOURCE Directory.

extern, char inputtchar port);
extern, void output(char port, char data);

1. FILENAMIE CLOCK.H

/* This file contains external declarations in prototype format for
all the functions defined in "clock.e". */

extern void clockintfstruct datetime *clock,struct idatetime *iclock);
extern void clockread(struct datetime *your-clock);
extern char clockcompare(struct idatetime *clockl~struct idatetitne *OcKZ);
extern, void clocksettstruct datatime *clock);
extorn, void clocksum(struct idatetime *result,struct idatetime *clockl,

struct idatetime *clocR2);
*extern void dump~lock(struct detetime *clock);

extern void rtclvoid);
extort, void show.waketimefstruct idatetim *waketime)l

*extern void testtimeout(void);
extor, char tjmeout(int delaytinmevint measure);
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J. rILENAME INITIAL.C

May 20, 1988 initial.c

/* Baud rates: TOLB1 bit is Ox07 = 9600, OxOf = 4800, Oxlf 2400 , Ox3f 1200,

0x7f = 600, Oxff = 300 e/

#include "newio.h"
#include "solar.h"

#include "solareva.h"

void inithardrare(void);

void ini tharcdqare(void)
{

output(MOR1,OxOO); /* Mode byte 810 #1. (basic 1/O) C/

outputiDDRAl,Oxff); /* Set port A to output. */

output(DDRBl,Oxff); /* Set port B to output. V/

output(DDRCl,0x30); / Set port C to input/output. /

output(TMO1,OxOO] /* Stop the timer. /

output(TMOl,Ox25]) /* Set timer mode. C/

output(TOLBlpOxlf); /* Set low byte for timer. (Baud rate)*/

* output(TOHB1,OxOO); /* Set high byte for timer. V,

output(STARTOlOx07); /* Start timer. /

output(MDR2,OxOO); /* Mode byte for 810 #2. V/

output(DDRA2,OxOO); /* Set port A to input. C/

output(DDRB2 ,OxOO); /* Set port B to input. C,

output(DDRC2,Ox31); / Set port C to input/output. C/

output(TMOZOxOO); /C Stop the timer. */

output(TMO2,OxZS)5 /* Set timer mode. /

output(TOLBZOxOa); /* Set low byte for timer. /

output(TOHB2,OxO0); / Set high byte for timer. C/

output(START02,OOa); /* Start timer. /

output(BCLRC2,Ox30); /C Set bits in port C /
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K. FILENAME SOLAR.C

April 11, 1988 solar.c

#include "solareva .h"
#include "convert.h"

#include "inout.vh"
#include "initial.h"

#include "global.h"
#include "clock.h"

extern void execute(void)i
extern void retrievetvoid);

void version(voidi);
void memorydump(void)j

char menu(void))

void versionvoid)
C

portdump(

"n rBob Oxborrow's Control Program for Solar Panel Research. nr" J;

portduaip('Version 1.00 May 9, 1988nrnr");

/* This routine lets the user produce memory dumps for any section of memory.*/
void memory_dump(void)

unsigned int address; /* Hill hold the starting address of the dump.*/
unsigned int length; /* Hill hold the number of bytes to dump.*/
while (TRUE) C

portdumpi"Please specify address: ");

address = gethexinti );

portdump("nrPlease specify number of bytes to dump (0 to quit): ")
length = gethexint( );
if(length == 0)

break)

dump( address,length);
3

3

6 char menu(void)

char data;

while(TRUE) C
portdump( "n rSolar panel evaluation control program. ,n,rln,r");

4portdumpi"A Real time clock functions. n r");
portdump("B Memory dump. nr")s

portcdump("C Execution.'n r");
portdumpI"D Data Hemory.nr");

data = termini );

echo(data);
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4

portdump(" n r ))

switch (data) <
case 'a': case A:

rtc( 3;

break)

case 'b': case 'B':
memory-dumpH;
break;

case 'C': case 'C':
execute( 3;
break;

case Id': case 'D':
retrieve( );
break;

default:
portdump("Use a valid letter please! '.n r")

)

()

void main(void)
C

inithardware( );

if (prtconnected = checkprt(3) C
version();
menu);

r)

45



L. FILENAME CONVERT.C

April 11, 1988 convert.c C/

#include "solar.h"
#include "newio.h"
#include "solareva .h"

char atoh(char *ascii))
unsigned int atohexint(char ascii[I)
int atoi(char *s);
char '*bcdasci char bcd))
int bcd_inttchar bcd);
char *ctoh(char byte);
char intbcd(int decimal);
char *itoalint n, char s[]);
char tolowert char c);
char *uitoh(unsigned int word))

/* This routine converts a two-byte ASCII string representing a valid
hexadecimal byte into a single hexadecimal byte. */

• char atoh(char *ascii) /*A string representing a hexadecimal byte. */

Sint i;

char result; /* The hexadecimal byte after conversion. */

result = 0;

for (i=0;i < HSTRLEN && ascii[i] != NULL;+4i) C
result *= 16;

if ( '0' <= asciii] && 9 >= ascii(i])
result += asciiii] - '0')

else i1 ('a' <= asciiti] && If' >= ascii~iI)
result += 10 + ascii!i] - 'a';

I

return result);

/* This routine converts a four-byte ASCII string representing a valid
hexadecimal word into a single unsigned integer. '/

* unsigned int atohexinttchar ascii[])
C

int is

unsigned int results /* The hexadecimal word after conversion. /

result = O
for fi=O;i < HEXINTSTRLEN && ascii(i] != NULL++i) C

result *= 161

if ( '0' <= ascii(i] a& 19, - asciifi)

result += ascii[i] - '';

else if ('a' <= ascii~i] && 'f > ascii~i])
result += 10 + asciiii] - 'a';

4
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return( result)

S/14***4***1141,1*4**14*1*14114,4414114*114*1*141.4144*14*14114*1*14114*11414414*.14*,14114144141*14*

int atoi(char *s) /* convert string to integer 1/

static int n, sign;

sign =1;
n =0;
switch (1s) C

case 1-': sign a-i

case +1: ++s;
I

whili (1s >= 0' & *s <= 19') n 10 1 n + s++ 0 -0;

return(sign * n)f

/* Convert a byte of binary coded decimal data to character string format. 1/

/ No check is made to ensure that input data really IS in BCD format. 1/

char *bcd asc(char bcd) / Tested March 16, 1987 1/

static char ascii[31;

int bcdint;

bcdint = OxOOff & ((int) bcd); /* Convert to integer. 1/

/* If the tens digit is a zero, put a blank in its place;

otherwise, put an ASCII digit there. /

asciitOl = (OxfO & bcdint) ?
(Ox30 (bcdint >> 4))

ascii[l] = 0x30 ((bcdint & OxOf)); / Get the units digit. 1/

ascii[2] = NULL; /* Terminate the string with

a null. 1/
return(ascii);

/* Convert a byte of binary coded decimal data to integer format. 1/

/* No check is made to ensure input data really IS in BCD format. 1/

/*Tested March 16, 1987 1/

int bcdjint(char bcd) /* The BCD character to be converted. 1/
C

int bcdint, result;

/* Take the units by masking off the tens. /

/ Then throw away the units and keep

the tens.*/

bcdint = OxOOff & lint) bcd;
result = OxOOOf & bcdint;

/*Multiply the tens by 10, and add to result.*/

result *= 10 * (bodint >> 4);
return( result);

)

/* Convert a character to hexadecimal ASCII string format. 1/
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char *ctoh( char byte)

static char ascii[HSTRLEN];
int byteint, nibble, base;

byteint = OxOOff & ((int) byte); /* Convert to integer. e/
nibble z byteint >> 4; /* Get the tens digit. C/
/* Find out whether the nibble is in the range [0-9], in which

case its ASCII representation starts at Ox30 (48 decimal), or
(10-15], in which case the ASCII representation starts at
A = 0x41 165 decimal). In the latter case, add the value of the
nibble to 65-10 = 55. */

base = (nibble >= 10) ? 55 48)
ascii[EO = base + nibble;
nibble = byteint & OxOfj /* Get the units digit. C/
base = (nibble >= 10) ? 55 48;

ascii~l) = base + nibble;
ascii[2) = NULL; /* Terminate the string with

a null. C/
return(ascii);

/C This routine converts an integer to a binary coded decimal character.
Since 99 is the largest legitimate BCD numberp the argument "decimal"
is taken modulo 100. */

char int-bcd( int decimal) /* The number to be converted. C/
(

int result;

1* Make sure decimal is a positive number. Cl

decimal = Idecimal < 0) ? -decimal : decimal;
decimal X= 100; /* If decimal is too big, take

it modulo 100. C/

result = (decimal / 10) < 4; /* Get the tens and shift them into the

high order half of the byte. C,

result = decimal X 10; /C Add in the units. C/

return((char) result);

/C itoa - convert n to characters in s. a/
char *itoa(int n, char s[]

{

static int c, k;

static char *p, *q;

if ((K n) < 0)
k = -k)

q z p = s;
do (

ep+ = k X 10 + 10'

) while (k /= 10);
if (n < 0) *p+4 = -- 4;
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while (q < -- p) C

c =*q; *q++ *p; *p =c;
return Cs);

/* tolower - if the input is in [A..Z], convert to lower case */

char tolowerichar c)
C

if ('A' <= c && c <= 'ZI)
return (c + OxZO);

return cl

/* Convert an unsigned integer to hexadecimal ASCII string format. */

char 'uitoh(unsigned int word)

static char ascii[HEXINTSTRLEN + 11;

unsigned int nibble;

int is

ascii[HEXINTSTRLENI = NULLs

for (i=O;i < HEXINTSTRLEN;++i) C

/* Get the current nibble, in order from most to least significant. '9
nibble = OxOOOf & (word >> (4 * (3 - i)))
/* If nibble >= 10, convert it to a letter from 'A' to 'F'.

If nibble < 10, convert it to a letter from '0' to '9'. '/
ascii~i] = (nibble >= 10) ? ('A' + nibble - 10) ('0' + nibble);

I

returni ascii);
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M. FILENAME INOUT.C

/* April 20, 1988 inout.c */

#include "solar.h"
#include "convert.h"
#include "solareva.h"

#include "global.h"
#include "newio.h"

char checkprt(void);

void dump(unsigned int address, unsigned int length);
void echo(char data);
char gethex(void))
unsigned int gethexint(void);

int getint(void);

void portdumptchar *string);
char terminivoid);
void testinputlvoid);

void testoutput(void);

/* This routine checks to see if there is a printer connected to the

controller. It returns TRUE if there is one, FALSE otherwise. */

char checkprt(void)
{

/* If the TERHON bit of the READC1 port is 0, then a terminal
is connected. In this case return TRUE; FALSE otherwise. */

/* This is temporary until we got the terminal recognition hardw.are working. 5
/* return(( input(READCl)) & TERMON)s*/

return( TRUE);
)

/* This routine produces a hexadecimal dump of any section of memory. */
void dump(unsigned int address, unsigned int length)
{

unsigned int i; /* Points to the current byte being dumped. */
char ascii[DUIMPNIDTH+lJ; /* Contains the ASCII equivalent of each byte. */

ascii(DUHPWIDTH] = NULL; /* Make sure ascii has a null delimiter
to look like a C string. */

4 /* Convert length to a multiple of DUHPHIDTH. */

length = ((length + DUMPHIDTH-1)/DLMPHIDTH) * DUMPHIDTH)
for (i=O)i<lengthi..) C

if 10==iY.DUPHIOTH) { /* Dump the ascii version and start a
new line every DUtMPHIDTH characten

if (i > 0)
portdump(ascii))
portdump( ".n r"))

portdump(uith(address+i)); /* Also, dump the current address. 5/

portdump(": "')s

/* Put extra spaces in the middle of each line. 5/
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if (0==i(DLIPNIDTH/2) && 0 != iZDLIPHIDTH) C

portdump(" .;
I

portdumpfctoh(*Ichar N) (address+iI)fl /* Dump each byte individually../

portdumpl " ;

/ Insert the current character in the string "ascii".w/

/* If it's not printable, replace it. /

ascii[iXDDUPKIDTHI = *(char *) (addressi J;
if (asciiliXDUMPHIDTHI < SPACE asciitiXDUPNIDTHI >= DELETE) C

ascii[i;DUMPHIDTH] = .

/* Make sure ascii is printed again at the end of the last line. 5/

if (i > 0)C

portdtkmp( ascii);

portdumpl ",n r" ))

/5 Echo a character to the terminal. 5/

void echol char data)
C

0) char buf[21;

buf[O = data;

but~l/ = NULL; /* Butf f ends in a null because it's a C string. 5/

portdump(buf); /* Use portdump 3 to output the string. /

/* This routine gets a hexadecimal byte from the terminal.*/

char gethex(void)
C

int it

char string[HSTRLEN + 11t

stringCHSTRLEN] = NULL;

for (i=O;i < HSTRLEN;t+i) C

stringtil = toloweritermin 3);

echo string ii);

if (stringli] >= 'a' && stringlil <= 'f')

* continue;

if (stringli] >= '0' && stringlil < '9')

continue;

string!i] = NULL;

break;
I

return( atoh( string));

I

/* This routine gets a hexadecimal word (two bytes) from the terminal.*/
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unrsigned int gethexint(void)

C

int ii
char string! HEXINTSTRLEN+l);

stringCHEXINTSTRLEN] =NULL;
for (i=O;i < HEXINTSTRLEN;.i+J

stringlil = tolower(tormini ))
echo( string! ii)
if (strjnglil >= aWL stringiI <= If*)

continue;
if (stringli) >= 101A stringlil < IV)

cantimu.;

stringlil =NULL;
break$

retun( atohexintE string))l

/* Get an integer from the terminal. 5

int getint(void)

int i;
char string!STRLEN);

stringCSTRLEN] NUMLL;
for (i0;i < STRLEN;++i)

string!i =i termin( )
scho( string! il))
if (string~i] < O0' stringli] > 191) C

stringli) NULL;
break;

return(atoi( string));

/* This routine sends character strings to the PRTDATA port. 5

void portdunpichar *string)

* if (!prtcovnected)
return;

while (*string) C
/* The terminal is ready when status bit 0 is a one. 5

whilel!EPRTOUTRDY A inputEPRTCTRLJ);)
outputl PRTOATA,*string4+ I;

HH*/

char terminivoid)
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while (TRUE) C
/* Bit 1 will be 1 when data is present. Hait for data. /
if (input(PRTCTRL) & PRTRDY)

break;

3
returni npJtIPRTDATA)); /* Data is present, so read it. /

void testinput(void)
C

int port$ /* Port number to be entered from the keyboard.*/
char data; /* Data to be read from that port. */

portdump( "Specify port address to be read (in hexadecimal): ")

port = gethexi); /* Get the port address. C/

portdump( "n r"))
data = input(port); /* Read from the port. e/

portdump("Data from port (in hexadecimal): ");

portdump( ctoh( data))

portdump(" n r");

/* This routine outputs a character to a specified port. 3/

void testoutput(void)
C

int port; /* The port address. */

char data; /* The data to be sent to the port. 5/

portdump("Specify port address to be written to (in hexadecimal): ");

port = gethexl ); /* Get the port address. 5/

portdump(" n r") I

portdump("Specify the data to be sent to the port (in hexadecimal): °);

data = gethex( );

output( port ,data)
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N. FILENANIE NEWIO.S

February 19, 1988 newio.s

export input, output

region code

char input(char port);
input:

push ix There are no local variables.
ld ix,O
add ixsp
ld c,(ix+4) ;Put port address in register c.
in a,(c) ;Get the data from the port.
pop ix ;Restore ix to the value it had before this

;function was called.

ret

void output (char port, char data);
output:

push ix

Id ixO ;There are no local variables.
add ixsp

l id c,(ix+4) jPut port address in register c.
ld a,(ix+6) ;Put data in register a.
out (c),a ;Hrite the data to the port.
pop ix ;Restore ix to the value it had before this

;function was called.
ret
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0. FILENAME STARTS

February 19, 1988 start.s

This startup code initializes interrupt vectors and runs START at

reset

to initialize RAM and call the user function main(I.
The companion link specification file is "spec" which defines
many of the imported symbols. Also see file "mbrk.asm" for the
mbrk() function if you want to use malloc J or callocfl.

export START,MBRKPTR
import main,STACKTOP,RADATAZRAN,ZRANSZ,IRAIRAMSZMRA

Define a variable to track memory allocations in mbrk( ).

region ram
NBRKPTR ds 2 ; (char *) to available memory

Reset code must be linked to address 0.

region reset
ld sp, 10 STACKTOP ; initial stack pointer (OxlO000 as 0)
jp START ; initial execution address

org Ox08
ARESTART: ;RESTART LOCATION 1

Jp START
org OxiO

BRESTART: ;RESTART LOCATION 2
ip START

org OxI8
CRESTART: ;RESTART LOCATION 3

ip START

org Ox20

DRESTART: ;RESTART LOCATION 4
ip START

org Ox28
ERESTART: ;RESTART LOCATION 5

ip START

org Ox2c
FRESTART: ;RESTART LOCATION C

jp START
org Ox30

GRESTART: ;RESTART LOCATION 6
Jp START

org Ox34
HRESTART: )RESTART LOCATION B

ip START

org 0x38
IRESTART: )RESTART LOCATION 7

ip START
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org Ox3C
JRESTART: ;RESTART LOCATION A

ip START

org 0x66

NONASKI: ;NON-MASKABLE INTERRUPT
jp START

This code can be anywhere; the reset code jumps to it.

region code
START ld ixO i end of stack frame chain

Id hl,MRAM ; initialize memory allocator

ld (MBRKPTR),hl

Zero out uninitialized RAM.

I; It is assumed here that ZRAHSZ > I but this is guaranteed

as long as tBRKPTR (above) is defined in region ram.

Id hl,ZRAM ; zero ZRAMSZ bytes here

Id (hl),O ; zero first byte

Id de,ZRAM+l ; repeatedly zero other bytes

ld bcZRAMSZ-1

ldir

Initialize other RAM from ROM.

ld hl,RAMDATA

Id deIRAM

ld bc,IRAMSZ

ld ab

or c

3r znone

ldir

none:

* Invoke maini with no arguments.

call main ; any return value is "int" in de

done: halt ; halt if main returns

To vector an interrupt to a C function, you must go though

a register save routine like the one shown here.

If the "-r exx" option is being given to the command line,

then registers bc' de' and hl' need not be saved and restored

4 since the compiler will make no use of them. The compiler

* does not use af' in any case.

region code

;INTERRUPT

push af I save registers

push bc
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push do
push hl

I push ix
push iy

S exx

push bc
push do
push hi
exx
call cfcn s call some C function

I exx
pop hi I restore registers
pop do

pop bc
I exx

pop iy

pop ix
pop hl
pop do
pop bc

|pop af

I ei

ret return from interrupt
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P. FILENAME GLOBAL.C

/W April 19, 1q88 global.c */

#include "solareva.h"

char prtconnected; /* TRUE is there is a terminal attached,

FALSE, otherwise. */

struct datetime clock; /* The most recently read time will be stored

here. */

struct idatetime waketime; /* The most recently read integer version of

time will be stored here. N/

5

I

!

I
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Q. FILENAMIE CLOCK.C

April 19, 1988 clock-c

#include "solar.h"
#include "convert .h"
#include "inout.h'
#include "solareva .h
#include "global .h"
#inc2ude "newio.h"

void clocKint(struct datetime *clock,struct idatetime *jclock);
void clockread(struct datetime *yourclockd;
char clockcompare(struct idatetime *clockl,struct idatetime *clock2j;
void clockset(struct datetime *clock)jU void clocksuntstruct idatetime *result,struct idatetite *clocKi,

struct idatetine *clocK2)s
void dumpclock(struct datetime *clock);
void rtc(void)$
void show~waketime(struct idatetime *waketime);
void testtimeout(void)s

*char timeouttint delaytime,int measure);

/* Convert a datetime structure to an idatetime equivalent. This allows
arithmetic to be performed on dates and times. */

void clockint(struct datetime *clock,struct idatetime *jclock)

iclock->imonth =bcd-inticlock->month);
iclock->jdate =bcd-int(clock->date 1;
iclock->ihour =bcdjint( clock->hour)j
iclock->iminuto =bcd-int(clock->minutei;
iclock-isecond =bcd-int( clocK-second);

/* This routine fills a clock structure with the current date and time. ~
void clocKread(struct datetime *your-clocK)

do
your-clock-second = input( SECONDS);
your-clock-'minute = input( MINUTES);
yourclock-hour xinputiHOURS);

yourclock-date = inputt DATE);
yourclock-month ainput(MONTH);

)while (your-clock-second input(SECONDS) && ++i 10 TRIES);

/* Compare two clock times. Return TRUE if the first is later than the second,
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FALSE otherwise. *
char clockeompareistruct idatetime *clocklpstruct idatetime *clock2)

int difference;

difference =clockl->jmonth - clock2->imonths
/* This logic allows you to decide January comes after December. e

if ((difference + 12) 7 12 < 6
8difference != 0) return(TRUE)s

if (differ-"'.e != 0) raturn(FALSE);
if (clockl->jdate < clock2->idate) return) FALSE);
if (clockl-ihour < clock2->ihour) return(FALSE);
if (clockl-iminute < clock2->imjnute) return(FALSE);
if tclockl-isecond < clock2->isecond) raturn( FALSE);

return( TRUE 3;

/* This routine sets the real time clock. *
void clockset(struct datetime *clock)

mnt month, date, hour, minute, second, maxdate;

char outstr[STRLEN];

static char cr1) ="n "

while (TRUE) C

portdump( "Month? (1-12) )

month =getint( ;
if (month >= 1 &8 month 4= 12)

break;
portdumprlInvalid month. Re-enter it. nr");

portdunp~ cr);
maxdate =(month ==4 month ==6 month 9 month 11) ?

30 :31;
maxdate =(month 2) ? 28 :maxdate)
while (TRUE) C

portdump( "Day? (1-")s
itoa(maxdate,outstr);
portdump( outs tr);
portdump(") 11);
date =getint( 3

if Idate >= I 8& date <= maxdate)

break;

portdui(cr);
while (TRUE) C

portdu.apt "Hour? (0-23) 11);
hour =getint )
if (hour >= 0 88 hour <= 23)

breaks
portdump('Invalid hour. Re-enter it.,nr");

portdump( cr);
while (TRUE)
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portdwim( "Minute? (0-59) 1);

minute = getint( )
if (minute >= 0 && minute <= 59)

break;
portdump(lInvalid minute. Re-enter it.,n r"l)s

portdump( cr)s
while (TRUE)

portduvqil Second? (0-59) "

second z getint( )
if (second >= 0 && minute <= 59)

break)
portdumt "Invalid second. Re-enter it. nj-");

portdumapI cr);
cloe)-month = mnt-bcd(month);
clock->date = int..bcd(date);
clock->hour =int~bcd(hour);
clock->minute z int-bcd(minute)s
clock->second =mit_bcd(second);

output( MONTH,clock->month);

output( DATE ,clock->date))

output( HOURS,clock->hour);

0 output (MINUTES ,clock-minute J;

output( SECONDS ,clock->second);

/* Find the sum of two calendar periods. C

void clocksun(struct idatetime *result,struct idatetime *clockl,

struct idatetime *clockZ)

mnt maxdates /* The last valid date in the month. *

result->isecond = clockl->isecond + clockZ->isecondj

result->iminute = result->isecond / 60;
result->isecond %= 60;

result->iminute += clockl-iminute + clock2-iminute;

result->ihour = result->iminuto / 60;
result-iminute Z= 60;

result->ihour += clockl->ihour * clockZ->ihour;

result-idate =result-ihour / 24;
* result->ihour X=24s

,esult->idate *~clockl-idate + clock2->idate;
result->imonth =1 + (clockl->imonth + clock2-imonth - 1) X 12;
maxdate =((result-imonth 4) (result->imonth 6)

(result-imonth 9) (result->imonth 11)) ? 30 31;
/* The real time clock makes no provision for leap year, so leap years

are ignored in this program (sigh!) */
*maxdate =(result-imonth ==2) ? 28 maxdate;

result-imonth += (result->idate -1) /maxdate;
result-idate 1+ (result-idate -1) Z maxdates

result->imonth 1 + (result->imonth - 1) Z 12;
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/* Print a clock structure or dumnp it to the output port. *

void dumpclockistruct datetime *clock)

if (prtconnected) (
portduinp("onth
portdump( bcd_ase) clock->month));
portdunp(" Date==I)

portdanp( bcd..asct clock->da to));
portdznp(" Hour = )
portdump( bcd..asc( clock->hour));
portdmpf Minute == .)
portdump( bcd~ssc( clock->minute) )
portdump(" Second==1)
portduip( bcd..asc( clock->second));
portdump(". ,r");

/* This routine is a menu-driven collection of routines for testing the
clock functions. E

void rtc(void)

char data;

while (TRUE)

portdump( ".n rReal time clock functions. .,,nr'

portdump("A Read clock.% nr");
portdump("B Set clock.,nr")s
portdump("C Test timeout( ) function.nr")s
portdumpP"Z Return to main menu. nr');

data =termin( J
echo( data);

por tdump ( "n r") I
switch (data) C

case 'a': case W':
clockread( Zclock);
dump-clock(Sc lock);

breaks
case W: case B':

clockset( &clook);

break)
case 'cl: case IV:

testtimeout( ;
break)

case 'z: case ZI:
returns

default:

portdiump('Use a valid letter please.nr");
break;
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/* This routine displays the wake-up time. */

void show_waketimelstruct idatetime 'waketime)
C

char s[STRLENJ; /1 String for itoal) routine. *1

portdump("Hake-up time is: %n rMonth 1"))
portdump( itoawaketime->imonth,s ) 1)

portdump('* Date = ")

portdump( itoa(waketime->idate,s));,

portdunpil" Hour = "))

portdumpl itoa(waketime->ihour,s));

portdump(" Minute = "
is

portdump( itoalwaketime->iminute,s));

portdwnp("I Second = i
portdump( itoa(waketime->isecond,s )3;

portdump( ".nnr")

/* This routine is used to test the timeout() function. '9

void testtimeout(void)

0 char data, /* A character entered from the keyboard. '/

units; /* The units of delay. C/

int delay; /* The number of units of delay. */

while (TRUE)

portdump("Test of timeout( ) function.\nrnr");

portdump("Specify time units for delay:\nrn r");

portdump("A Hoursn r"J;

portdump( "B Minutes nr")

portdump( "C Seconds nr")

portdump("Z Return to previous menu. nr;)

data = termini );

echo( data);

switch (data) C

case 'a': case 'A':

units z HOURS)

break;

case 'b': case 'B':

* units = NINUTES;

break;

case 'c': case IC':
units = SECONDS;

break;

case 'ZI: case 'Z':

re turn j

* break;

default:

portdump("Use a valid letter please.,nr"))

break;
I

portdump(" n rHow many units of delay do you want? n r".);

0, delay getint( 1;
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portduipt" n rStarting delay: n r"3
clocKread( £clockl
dump~clocKt &clock);
timeout(delay,units i

while( !timeout(NULLNULL) )I

pordwmpt ("Delay complete. n r

echoIBELL.);
clocKreadl Zclock ii
d.mp.clock( &clocks

/* This routine is used to initiate a timeout sequence, and to test for
completion. To set the desired delay time, the parameter "delay"
should be non-zero. To test for completion, "delay" should be zero (NULL.).
*hen setting the delay time, the funrction always returns TRUE. Wh~en

testing for completion, it returns TRUE if the time has elapsed, FALSE
otherwise. */

char timeoutlint delaytime,int measure)
/* "delaytime" is the length of the timeout. *
/* "measure" is -the unit of measure of time. This can be

MONTH, DATE, HOURS, MIINUTES, or SECONDS. *

sttcsrc aeietmnw
static struct idatetime timenow atie

clockread( ZtimenowJ;
clockinti Ztimenow,&jtimenow)i
if (delaytime ==NULL) ( /* If delaytime zz NULL, then check to

see if timeout period is over. C

return) clockcomparel &itimenow,&waketime));

3else C /* Otherwise, set the wakeup time. c
waittime.imonth =waittime.idate =waittime.ihour

=waittime.iminuto waittime.isecond =0;

switch(measure) C

case MONTH:
waittime.imonth de3.aytime;
break;

case DATE:
waittime.idate delaytime;
break;

case HOURS:
waittime.ihour delaytime;
breaki

case MINUTES:
waittime.iminute = delaytime;
breaki

case SECONDS:
waittime.isecond =delaytime;

break)

clocksum( 8waKetime,iitimenow,Zwaittimeii
show waketime) &waketime I;

returni TRUE);

3
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R. FILENAME DELAY.S

May 09, 1988 delay.s

#def ine LOOPCOUIT 100

; Delay for n thousands of a second.
; void delayin)
; int n) The number of thousands of seconds of delay desired.

export delay

region code

delay: push ix ; t=lST.

; Cause ix to point to the first parameter.
ld ixP4 ) t=14T.

add ixsp t=15T.

ld c,(ix+O) t=9T.

ld b,(ix+l) t=19T.

LOOPI: Id de,$LOOPCOUNT t=lOT.

LOOPZ: dec de ; t= 6T. Count down to zero in LOOP2.

Id ad ; t 4T.

or e t
= 

4T.

ip nz,LOOPZ t=lOT. Inner loop t=24T.
dec bc t= 6T. Repeat LOOP1 until time is up.

ld a,b ;t= 4T.

or c t= 4T.

ip nz,LOOPl ; t=lOT. Outer loop t=(3424*LOOPCOUNT)T.

pop ix t=14T. Restore ix to its initial value.

ret t=lOT.

; Total Delay =(206&134*24NLOOPCOLWT)*n)T.

Solve n ms = (106+(34+24ILOOPCOR4T)*n)T with T = 1/f = 400 ns to

get n = LOOPCOUNT. f = 2.5 MHz. For n=lO0, LOOPCOUNT 100, leading

to a delay of 97.4 ms for an error of 2.6X. For n=l,

this leads to a delay of 1.016 ms instead of the I ms required, for

and error of 1.6Z.
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S. FILENAMIE SYMBOLS

RAJIDATA (specfjle) absol RAIIDATA Sl~bh Oh

ENDROM Ispecfile) absol ENDROM aOOOh Oh

IRAM Ispecfile) absol IRAM aOOOh Oh

IRAMSZ (specfile) absol IRAMSZ Sh Oh

ENDDATA (specfile) absol ENDDATA 8193h Oh

ZRAM (specfile) absol ZRAM a008, Oh

ZRAHSZ tspecfile) absol ZRAMSZ 1O6bh Oh

tIRAtI Especfile) absol MRAM b073h Oh

MRAMSZ (specfile) absol MRAMSZ 250h Oh

STACKTOP (spoefile) absol STACKTOP 10000h Oh

START code reloc START 69h 42h

main code reloc void maino) 199h 50h

M#RKPTR ram reloc MBRKPTR aOO8h Oh

4 itus ram reloc unsigned char -fltus~b072h Oh

celinum ram reloc int cellnumn; aO2cI, Oh

version code reloc void versioni ; 93h 12h

memory~dump code roe void memory-dumpt ii a4h lbh

testtjmeout coda reloc void testtimaouti); ce~h I lh

show~waketime code reloc void showwaketimet h bflh deh

itoa code reloc unsigned char *itoao ;ldfzh 9ah

atoh code reloc, unsigned char atoh( h1965h 16h

*ctoh code reoe unsigned char *ctoh( Jlcbch 6fh

atoi code reloc int atoio;) lb4ah 3bh

* stod code reloc int -stodo ; 3655h dh

printf code reoc, mnt printfo;) 360fh ldh

uitoh code reloc unsigned char *uitoh( )led6h b8h

dump code reloc void dumpi ) ed~h 23h

atohexint code reoe unsigned mnt atohexinto ;la4eh Zah

i ramt reloc int is aO35h Oh

waketime ram reloc struct waketime) b064h Oh

clockcompare code reoe unsigned char clockcompare( 13l~h 36h

clocKsum code reoe void clocksumo; 735h 8bh

clockint code reloc void clockint( h ladh lah

clockset code reloc void clockseto; 4i'2fh 48h

c-bits ram reloc struct *c-bits) a044h Oh

.vsgn code reoe vsgn 7a28h bh
timeout code reloc unsigned char timeouto ;dfch 127h
dump-clock code reloc void dump-clock( J; a7Th a6h

-ultos code r-oo -ubtos 36fTh 29h

output code reloc int output()J; 1952h 12h

eurrontout ram reoe float currentout; a03eh Oh

cleocki-ead code reoo void clockread( ; 264h 25h

clock ram reoe struct clock; bOSdh Oh

rtc code reloc void rtcU;) b3dh bah

echo code roboc, void echo( 1082OSh 4ch

inithark'are code roe void initharckqaref )) 1434h cit

-muld code reoo it -nubd( 3 47e3h 9ch

currontdata ram r-ooe unsigned char currentdata~a038h Oh

oldcurrent ram i-sloe unsigned char oldeurrents a043h Oh

voltdata ram reloc unsigned char voltdata; a03Th Oh

portduwp code reoe void portdumpo ; l3leh 97h

input code reloc unsigned char inpt( ),1942h 7h

retrieve code reoe void retrievel); l6oeh 71h

cell ram reloc mnt cells aO31h Oh
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"eim code reloc un~signed char menu()1; f4h Zah

muliw code reloc: ..mulww 993h bh

_dtos code reoe it _dtoso I 369ch 17h

oldvolt ram reloc unsigned char oldvoltjaO4Zh Oh

cnvgncdone ram reloc unsigned char cnvgncdone ;a039h Oh

gethexint code reloc unsigned int gethexinto ;1187h 6eh
testinput code reloc void testinputol) 138fh afh

delay code reloc void delayC); lf6fh ch

-modswa. code rueo jnodsww 4a7ch 14h

experiment-data ram reloc struct experiment..data~lOOhIO8hI~aO46h Oh

execute code reloc void execute(); 152ch Zeh

bcd-asc code reloc unsigned char *bcdasc( ) IbeOh 4c1,

bcdint code reloc mnt bcdjinto; lc49h 60h
prtconnected ram reloc, unsigned char prteonneetedsbO~ch Oh

int-bcd code reloc unsigned char int-bcd( ;1d64h 89h
termin code reloc unsigned char termin( );373h a4h
getint code reloc mnt getint( ) 126ch 84h~

testoutput code reloc void testoutput( )i3e9h cOh

gethex code reloc unsigned char gethexo )ila4h 57h

checkprt code reloc unsigned char checkprt( )ed2h 17h

-divwws code reloc ,divwws If ach 16h

command data reloc struct command; a003h Oh

voltage ram reloc, it voltage; aozfh Oh

*tolower code reloc unsigned char tolower( ;leaah ach

voltout ram reloc float voltout; aO3ah Oh

row ram reloc: it row; a033h Oh

-subd code reloc int _subd(); 4509h 6ch

stol code reloc int _stol( ); 3ee5h 23h

round data reoe it ..round; a004h Oh

tstd code reloc int -tstd ) 3fe~h 12h

-sltoa code reloc unsigned char *..sltoao1)5577h 14h

-shrul code reloc int -shrul( ); 6306h Ich

-shiul code reloc int _shlull )) 63f2h 2ah

-sitos code reloc -sltos 36d6h 28h

tstmd code reloc int _tstmd(, 4~'036h 19h

strien code reloc: it strlenU; 5543h 9h

strchr code reloc: unsigned char *strehr( )5507h ch

*.stosgl code reloc int _stosgl( 1; 7329h dh

-shrull code reloc mnt _shrulli 1; 57eah 16h

-shlull code reloc int _shlull( ); 59eah 2ah

sgltos code reloc int _sgltos( ; 750fh 21h

-addd code reloc int -adddo) 4106h 30h

.ultoa code reboc unsigned char o-ultoao ;56e3h 14h

0 itod code reloc int _ltodo 1 3c9cth eh

iltoS code reloc int _ltos i; 3e45h eh

-addul code rue it .addulU); 64d5h 57h

cdblprec data reloc mnt _dblpree; a006h Oh

_uprint code reloc int -uprinto)J 2048h, 34h

_cnpd code reloc mnt _cwpdo ; 454bh79

* cnpl code reloc -cmpl 6b35h cti

..negd code reloc int -nogd( I 4095h 27h

-negl code reloc -negl 7allh ah

addull code reloc mnt _addullE )i Sbelh 3eh

mulul code reloc mnt _mulul())I 65cfh 4h

MnUMl code reloc: mulli 796dh 18h

-divd code reloc int _djvdo ; 48d6h oeh
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_dtol code reloc int -dtol( ); 3d4ah24

uctype const reloc unsigned const char uctype481h~ibS4h Oh

.. normd code reloc int _normdo;) 4aa4h eh

-nimul code reloc int _ntmull )i 6568h 41h

norms code reloc int -normsl ) 5181h eh

_eCvt code reloc unsigned char *-ecvt( h3bech 2bh

-mulull code i-abc int -mululli); Sebch Sah

nwodsll code reloc .jnodsll 78e2h 29h

-moduli code reloc -moduli 7882h ch

jnulwul code reloc .mulwul 79a4h 13h

.jnulwsl code i-abc .jiulwsl 79clh lbh

-modu4'E code i-aloe jnodUI'Mw 4a6lh ch

.dtosl code reloc .dtosl 3c66h 24h

_dtoul code reloc _dtoul 3c82h 25h

.djvul code r-abc nt -divul( ); 6a2lh Sdh

fputc code reabc int fputcH;) 7a38h 10h

.fCvt code reabc unwsigned char *_fcvtO ~c29h 35h

..n-mll code reloc int -nrnull( )) Sd48h 49h

-zerod code reloc int -zerod( i 405ch lfh

-dbltoa code reloc unsigned char Wdbltoaf );3718h 16h

_dltod code i-abc int .Abltodos) 6elch 22h

_dtodbl code reloc int _dtodbl(); 6b52h dh

-divull code reloc int -divulbl ); 6053h 71h

-divlls code i-doe .divlls 77f8h 2ch

-diviweu code reloc: .divwwu lf8fh ch

-djvllu code reloc .divllu 779.5h ch
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APPENDIX C. SOLAR CELL ARRAY TEST CIRCUIT CODE

A. FILENAME CELLTEST.C

/* Hay 28, 1988 Celltest.c

Program for testing solar cell array I-V characteristics V/

#include "solareva.h"

#include "newio.h"

#include "convert. h"

#include "delay.h"

#define ARRAYSZ 1 /* number of test cell */

#define STOP 0 /* stop */

#define START 3 /* high assertion for two bits Iconvergence) /

int cellnum, voltage, cell, row, i;

char voltdata;

char currentdata;

char cnvgncdone;

float voltouts

float currentout;

char oldvolt)

char oldcurrent;

void execute( void)

void retrieve(void)]

struct PORT1_B { /*PortB-1 Bit field l/

unsigned int un: 3; /*unused bit*/

unsigned int strtn: 2; /*a/d start conversion signal*/

unsigned int celladd: 3 /*solar cell number*/

) command = (0,0,0) /* initialize PortBl V/

struct CPORT C /*Bit field for Port C-2 input V/

unsigned int hi: S; /lunused high bits*/

unsigned int bits: 2; /*bits Cl and C2*/

unsigned int lo: 1; /*unused low bits*/

* c bits;

struct data-pt C /*Array structure for data storages/

char voltagept) /*voltage*/

char currentpt; /*current*/

) experimentdata[256 [81; /*row/column for data*/

void execute( void)

6
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for (callnum=O1 cellnun < ARRAYSZ; cellnuji+.)( /i*loop for test call*/

row=O; /*storage counater*/

oldvolt:Oi /*initialize comparison variable*/

oldcurrent=O; /*initialize comparison variable*/

command.calladdcellwm /*set address bit&*~/
output( PORT1-CTRL, commnand); /*initialize PortB-l*/

for (voltage=O; voltage < 256; voltage++)( /*input voltage ladder*/

outputIPORT..DA, voltage); /*output cell bias voltage*/

cotuiand.strtcn=START; /*Start Convergence pulse*/
/*for both ADC's*/

output(PORTl..CTRL, coimmand); /*do it*/

coeuuand. strtcnSTOPI /*End Start Convergence*/
/*pulse for both ADCs*/

output(PORTlCTRL, command)$ /*do it*/

delay( l) /*I ms delay for settling*/

while ITRUE)( /*EOC check loop*/

cnvgncdone =input(PORTC2); /*assign PORTC2 word*/

c-bits =(struct CPORT *)(9cnvgncdone)) /*looking for EOC bits*/
if (c-bits->bits==OxO3) /*bits Cl and C2 must be high*/

-' break; /*Hhten EOC bits high, cont.*/

voltdata =input(PORT2_ADV); /*collect voltage info*/

currentdata =input(PORT2..ADC); /*collect current info*/

if((voltdata ==oldvolt) U8 (currentdata oldcurrent))

continues /*ignore transistor bias*/
/*and multiple data*/

iftoldvolt != 0)( /*smooth curve, delete*/
if(oldvolt < voltdata) /*voltage surges*/

continue;

oldvoltvoltdatas /*reset comparison*E/

oldcurrent~currentda ta; /*reset comipari son*/

if(voltdata ==0) /NIsc reached*/
voltage =255s /Cend loop*/

/* Data Storage V/

experiuent-datarrowllcellnianl.voltagept a voltdatas
/*stores voltage data*/

experi mt-datar row] Ccellnu.m]currentpt = currentdata;
/*stores current data*/

row++$ /* increment array row*/
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)

3

voltage=Oi /*turn off bias*/
output(PORTIDA, voltage)l /*do it*/

)

/* routine to retreive data from RAM C/

void retrieve(void)
C

printf("Specify cell number; 0-7. ") /*Which cell data?*/

cell = getintl i) /*get cell number from terminal*/

printf(' "nr");

printf( "Xd,dn r",2,2); /*disc file output header*/

for ii=O i<256 && ((experiment_data(il(celll.voltagept !: 0)
(experiment_data[ i ][cell ].currentpt !=0 ) ) ++i )(

/*loop prevents collecting data past end of file*/

voltout = (floatlexperiment-data[i lcell].voltagept * .0041

• /*floating decimal at .0041 mv per step*/
currentout = (float)experiment-data[il[cell].currentpt * .00117;

/*floating decimal at .0117 mv per step and*/
/*division by 9.9 ohms to current*/

printf(If"M", voltout); /*output voltage*/

printf("Yf,", currentout); /*output current*/

printff"Xfn r", 0.0); /*disk file trailer*/
3

printfV"7d,Xd,Zd",30,30,30); /*disk file end parameters*/

7

0

7'

0



APPENDIX D. SAMPLE SILICON SOLAR CELL TEST DATA

A. FILENAMIE SILICON.DAT

2,2
0.524800,0.000000,0.000000
0.524800,0.001170,0.000000
0.524800,0.002340,0.000000
0.524800,0.003510,0.000000
0.524800,0.004680,0.000000

0.524800,0.005850,0.000000
0.524800,0.007020,0.000000
0.524800,0.008190,0.000000

0.524800,0.009360,0.000000
0.524800,0.010530,0.000000
0. 524800 ,0 .011700 ,0. 0000 00

0.524800,0.012870,0.000000
0.524800,0 .014040,0.000000

0.524800,0.015210,0.000000
0.524800,0.016380P0.000000
0.524800,0.017550,0 .000000

0.524800,0 .018720,0.000000
0.524800,0.019890,0 .000000
0.524800,0.021060,0.000000
0.524800,0.022230,0.000000

0.524800,0.023400,0.000000
0.524800,0.024570,0 .000000

0.524800,0.025740,0.000000

0.524800,0.026910,0.000000
0.524800,0 .028080,0.000000

0.524800,0.029250,0.000000

0.524800,0.030420,0.000000
0.524800,0.031590,0.000000

0.524800,0.032760,0.000000
0.520700,0.033930,0.000000

0.520700,0.035100,0.000000
0.520700,0.036270,0.000000

0.516600,0.037440,0.000000

0.516600,0 .038610,0.000000

0.512500,0.039780,0.000000

0.512500,0.040950,0.000000

0.512500,0.042120,0.000000

0.508400,0 .043290,0.000000

0.508400,0.044460,0.000000

0.508400,0.04563040.000000

0.504300,0.046800,0.000000
0.504300,0.047970,0.000000

0.504300,0.049140,0.000000
0.500200,0.050310,0.000000

0.500200,0.051480,0.000000

0.500200,0.052650,0.000000

0.496100,0.053820,0.000000
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0.496100,0.054990,0.000000

0.492000,0.056160,0.000000

0.492000,0.057330,0.000000

0.492000,0.058500,0.000000

0.487900,0.059670,0.000000

0.487900,0.060840,0.000000

0.487900,0.062010,0.000000

0.483800,0.063180,0.000000

0.483800,0.064350,0.000000

0.483800,0.065520,0.000000

0.479700,0.066690,0.000000

0.479700,0.067860,0.000000

3.475600,0.069030,0.000000

0.475600,0.070200,0.000000

0.475600,0.071370,0.000000

0.471500,0.072540,0.000000

0.471500,0.073710,0.000000

U 0.467400,0.074880,0.000000

0.467400,0.076050,0.000000

0.467400,0.077220,0.000000

0.463300,0.078390,0.000000

0.463300,0.079560,0.000000

0.463300,0.080730,0.000000

0.455100,0.081900,0.000000

0.455100,0.084240,0.000000

0.451000,0.085410,0.000000

0.451000,0.086580,0.000000

0.451000,0.087750,0.000000

0.446/00,0.088920,0.000000

0.446900,0.090090,0.000000

0.442800,0.091260,0.000000

0.438700,0.092430,0.000000

0.438700,0.094770,0.000000

0.434600,0.095940,0.000000

0. .30500,0.098280,0.000000

0.430500,0.099450,0.000000

0.430500,0.100620,0.000000

0.422300,0.101790,0.000000

0.422300,0.102960,0.000000

0.422300,0.104130,0.000000

0.414100,0.105300,0.000000

0.414100,0.107640,0.000000

0.405900,0.108810,0.000000

0.3q7700,0.112320,0.000000

0.385400,0.115830,0.000000

0.377200,0.119340,0.000000

0.360800,0.122850,0.000000

0.336200,0.126360,0.000000

0.295200,0.129870,0.000000

0.028700,0.131040,0.000000

* 0.000000,0.132210,0.000000

30,30,30
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